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Abstract 

On the basis of the approach developed in the previous 
paper [Bugaev & Chepul'skii (1995). Acta Cryst, A51, 
456-462] within the framework of the multicomponent 
lattice gas model, the symmetry properties of the unary 
and binary mixing potentials and of the Fourier 
transforms of the binary potential for disordered 
interstitial-substitutional solid solutions with f.c.c., 
b.c.c, and h.c.p, crystal lattices are analyzed. 

1. Introduction 

In the previous study (Bugaev & Chepul'skii, 1995) 
(hereafter denoted paper 1), within the framework of the 
multicomponent lattice gas model, the symmetry proper- 
ties of many-particle mixing potentials for a solid 
solution with a given arbitrary crystal structure were 
considered. The relationships between the matrix 
elements of mixing potentials and of their Fourier 
transforms caused by the space symmetry of the crystal 
structure were obtained. The aim of this paper is to make 
specific the above-mentioned relationships for the f.c.c., 
b.c.c, and h.c.p, disordered crystal structures, taking into 
account the possible distribution of the atom components 
(substitutional and interstitial) among the sites and 
octahedral and tetrahedral interstices of the crystal 
lattice. Consideration of all these types of position 
within the framework of the unified scheme is dictated by 
an aspiration to make the results of this work applicable 
to traditional substitutional or interstitial alloys and also 
to the alloys in which the atoms of one or other 
component can change their coordination under the 
variations of external thermodynamic parameters. Ex- 
amples are some metal-hydrogen alloys in which the H 
atoms can occupy both octahedral and tetrahedral 
interstices of the crystal lattice of one metal (e.g. 
Fromm & Gebhardt, 1976). As another example, one 
can consider so-called hybrid substitutional-interstitial 
solid solutions in which the atoms of one component can 
occupy both the sites and the interstices (McLellan, 
1989). We restrict the consideration to the cases of binary 
and unary mixing potentials since they hold a central 
position in the advanced theories of solid solutions. 

In §2, the results obtained in paper 1 concerning the 
symmetry properties of the injection and binary mixing 
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potentials and the transformation rules for the Fourier 
components of the latter are summarized. 

In §3, the lattice gas model is implemented for the 
distribution of atoms of corresponding components at 
sites and at interstices (for both octahedral and tetrahedral 
coordinations of interstitial atoms) in f.c.c., b.c.c, and 
h.c.p, crystal lattices. This consideration involves the 
cases of substitutional, interstitial and composite inter- 
stitial-substitutional solid solutions simultaneously. Inter- 
change rules between positions of different types due to 
the symmetry operations are obtained. 

In ~4, it is shown that, at each considered f.c.c., b.c.c. 
and h.c.p, disordered structure, the injection energies for 
positions belonging to the same type of position (site, 
octahedral or tetrahedral interstices) are equal. The 
symmetry analysis also allows us to list the coordination 
shells where noncentrality (anisotropy) is possible for 
interatomic interactions of the components (both inter- 
stitial and substitutional) in the above-mentioned crystal 
structures. 

In §5, the selection of the independent matrix elements 
of the Fourier transforms of the binary mixing energies 
for the f.c.c., b.c.c, and h.c.p, disordered structures is 
performed (on the basis of the symmetry requirements 
imposed on these matrix elements) and the explicit 
analytical interrelations between the dependent and 
independent elements are obtained. The results can be 
used to control the symmetry adequacy of interatomic 
potentials obtained both on the basis of the semi- 
phenomenological consideration and within the first- 
principle theories of the solid solutions with correspon- 
ding crystal structures. 

In §6, the matrices of the Fourier transforms of binary 
mixing energies for the case of the high-symmetry points 
of the reciprocal lattice of disordered f.c.c., b.c.c, and 
h.c.p, structures are constructed, taking into account the 
symmetry relationships between corresponding matrix 
elements. The importance of the similar separate analysis 
of this particular case is determined by the fact that the 
corresponding independent matrix elements are the basic 
parameters of the advanced theories of solid solutions 
(e.g. de Fontaine, 1979; Khachaturyan, 1978, 1983; 
Yukhnovskii & Gurskii, 1991). In these theories, the 
symmetry information on a structure of the Fourier 
transforms of the binary mixing potentials is sufficient 
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464 SYMMETRY OF INTERATOMIC LATTICE POTENTIALS. 2 

for the choice of the convenient sets of basis functions 
for expansions into series within the concentration-waves 
method when analyzing the possible channels of 
structural instabilities in solid solutions. 

(1.35), (1.37) and (1.38) have the following form: 

• = (3) 

a~ 
Wpq(R) = w ~ ( - R ) ,  (4) 

2. Symmetry of unary and binary mixing potentials 

The potential E of the multicomponent solid solution 
within the generalized model of a lattice gas, taking into 
account the one- and two-particle interactions, can be 
obtained from formulae (1.9), (1.34) and (1.36):* 

zp 
E = V o + E  E qb~,N; 

"31-½ E E E E 0t ' ix2 "~r~ Wpq [,IN 1 -- R2) 
RI,R2 Pl,P2 cq---~ll a2----~l 

× C,~(pl, RI)C,~2(p2, R2). (1) 

Here, V 0 is the potential of the solid solution in which 
any sublattice p is completed by the particles of type ot ~, 
N ~' is the total number of a particles in the p sublattice, 
4,~is the potential of injection of the a particle into the p 
position (the unary mixing potential), Wp~0Rl - R2) is 
the binary mixing potential, which we shall call in this 
work the mixing potential of the solution. The quantities 
C,~(p, R) are def'med by (1.3): 

1 if the posit ion (p,R) is occupied by 
C~,(p, R) = an a- type  a tom (2) 

0 in the opposite case; 

the summations over R and p are taken over N primitive 
unit cells and v sublattices, respectively, and the 

P P , a.~p types summation over a is taken over a 1, a 2, • • • 
of atoms allowed for in the occupation within the 
sublattices p, excluding the type a P. 

In accordance with paper 1, the choice of the primitive 
unit cell (determined by the set of radius vectors R) in the 
multicomponent solid solution (MSS) in the given 
structural state should be performed in such a way that 
the set { R } coincides with the set of translation periods 
of the space symmetry group G. Thus, in the disordered 
state, the MSS space symmetry coincides with the space 
symmetry of the MSS crystal lattice and we can use the 
primitive unit cell of this lattice without any changes. In 
this case, unlike the case of the ordered state, the 
sublattices p are distinguished by the crystallographic 
factor only. 

The symmetry relationships for the components of the 
injection and mixing potentials in accordance with 

• The references for the formulae from paper 1 are presented in the 
form (1.XX). The number after the point is the equation number in 
paper 1. 

o¢ t .~ Wpq(R),  Wp,q,(R ) : (5) 

where the primed quantities can be obtained from non- 
primed ones as a result of the symmetry transformation 
g = { S I r ( S ) + R  m} (see paper 1, §3) belonging to the 
symmetry group G: 

X(p' ,  R t) = gX(p,  R) (6) 

[X(p, R) = R + hp are the radius vectors of the positions 
(p, R), hp are the vectors of the primitive unit-cell 
basis]. 

The matrix [Ir~pq~(k)[[ of the mixing-potential Fourier 
transforms is defined by (1.39) as 

~ aft Wpq(k) = ~ W~pq~(R)exp[-i0t, R)]. (7) 
R 

The relationships between the elements of this matrix 
according to (1.40)-(1.43) can be represented as 

Wp,q,(Sk) = Wpq(k)exp[i(Sk, hp, - he, ) - i(k, lap - h e ) ] ,  

(8) 

~q~(-k)  = ,~'*fk~ (9) • .pq ~.--~,, 

Wi, q(k : ~ ( - k ) ,  (10) 

Wpq(k),  Wpq(k + b) = (11) 

where b is an arbitrary vector of the reciprocal lattice. 

3. The rules of position types interchange under the 
symmetry transformations in f.c.c., b.c.c, and h.c.p. 

disordered structures 

Under sufficiently high temperatures (but lower than the 
melting temperature), solid solutions are, as a rule, in the 
disordered state.* If the temperature is lowered, the series 
of step-by-step phase transformations of the ordering 
type take place. Thus, the disordered state is an initial 
state for all following ordered states of solution. 
Therefore, it would be reasonable to consider disordered 
solid solutions first. 

Let us consider the disordered interstitial-substitutional 
solid solution based on f.c.c., b.c.c, or h.c.p, lattices. 
Suppose corresponding atoms (interstitial and substitu- 
tional) are distributed among the sites m, octahedml o 
and tetrahedral t interstices of these lattices. In Figs. 

*The exclusions are some intermetaUic and ceramic chemical 
compounds, in which the disordered state cannot occur. 
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l(a)-(c), the relative arrangement of the sites and 
interstices within the primitive unit cell formed by the 
elementary translation vectors a i ( i  = 1, 2,  3 )  o f  f . c . c . ,  

b.c.c, and h.c.p, lattices, respectively, is shown.* The 
coordinates of the vectors that specify the positions of 
sites and interstices within the primitive unit cell are:l" 

f.C.C. 

h m = (0 ,  O, 0 ) ;  

h t  I : (41_, l ,  1) ;  

b . c . c .  

h m - -  (0 ,  0 ,  0 ) ;  

ho, = (0,½,½); 

hq = (3,¼,1); 

ht ' = (½,¼,3); 

h.c.p. 

ho = 
ht 2 = ( 3 , 3 , 3 ) ;  

ho 2 = (1,0,1);  

ht2 = (21-,3,1); 

h/5 : (¼,1,¼); 

hm ' = ( 2 , ½ , 3 ) , ;  

ho, = (0 ,  0 ,  0 ) n ;  

ht  I " -  ( ½ , 2 , 1 + A ) , ;  

hi3 = ( 2 , ½ , 1 -  A)n;  

h o 3 - -  ( 1 , 1 , 0 ) ;  

ht 3 _. ( 1 , 1 , 3 ) ;  

ht 6 = (¼,3 ,½);  

hm 2 = (1,2,1)H; 

ho2 = (0, 0, ½)H; 

ht 2 = (2,½, A)H; 

hi4 = (1,2, 1 -- A)H, 

* In the h.c.p, lattice, the vector a 3 is directed alongside the sixfold 
axis (c axis), a I and a 2 are normal to a 3 and form an angle of  120 °, the 
origin of  the primitive unit cell is placed at the center of  the inversion of  
the h.c.p, crystal (at 01 interstice). 

I" The coordinates are given on a crystallographic basis {ai}, i.e. 
h x =(X1,X2,X3)=_Xlal + X 2 a 2 + X 3 a  3 (where X is any of  the 
positions in question). 

t~ ............ o %,I ,~ "~" 

(a) (b) 

(c) 

Fig. 1. Relative arrangement of the sites and interstices within the 
primitive unit cell [formed by the vectors a i (i = 1, 2, 3) of  
elementary translations] of  (a) f.c.c., (b) b.c.c, and (c) h.c.p, crystal 
lattices. 

where A -- (1/3)(a/c)  2 and a and c are the translation 
periods of the h.c.p, lattice in the basis plane and in the 
normal direction to it, respectively. 

The space symmetry groups of f.c.c., b.c.c, and h.c.p. 
lattices (and, therefore, of corresponding disordered 
solutions based on them) are Of = Fm3m, 0 9 = Im3m 
and D4h "-P63/mmc,  respectively (International Tables 
for  X-ray Crystallography, 1952). In Tables 1-3, the 
interchange rules for the sites and interstices of the 
different types are shown for the cases of f.c.c., b.c.c, and 
h.c.p, lattices, respectively, under the lattice symmetry 
transformations. In these tables, in every row correspond- 
ing to the symmetry transformations {SIT(S)}* (from the 
space group of the lattice under consideration), one f'mds 
the vector k ' - - S k  in the third column and in the 
following columns the types of site and interstice that 
correspond to the new [obtained as a result of the 
symmetry transformations {S IT(S)}] positions of all types 
of site and interstice. For example, under the symmetry 
operation i(:~, ) ,  ~) for the h.c.p, lattice, 

(kl, k2, k3)--+ ( - k l ,  -k2,  k3); ml-->'m' 1 - - -m2 ;  

O 1 ---+ Otl ~ O 1 . . . .  

Note that the interchange rules for the positions in 
f.c.c, and h.c.p, lattices are the same for those elements 
{S[z(S)} of the corresponding space groups that have the 
point-group transformations S belonging to the same 
class (indicated by the horizontal heavy lines in Tables 
1-3). 

4. Symmetry  of injection and mixing potentials 

From Tables 1-3 and the general symmetry rules (3)for 
injection potentials, we obtain 

f.c.c. 

~ q0 ~ tl ~ 1 2 ,  

b.c.c. 

t/, ~ - ~  ~ ~ ~ - ~ - ~ - ~ = q 0 "  
O1 - -  02 ~ ~O3, l I --- t2 - -  t3 - -  t4 - -  t5 t6 ' 

h.c.p. 

¢,~ = t / ,  ~ ~ = ~ q0~ ¢~ ~ ~ 
ml m2, 01 ¢~02 , t I ~ "  t2 ~ t3 --- t4 • 

Thus, in every case of disordered solid solution under 
consideration, the injection potentials for the positions of 
the same type (one of m, o or t) are equal. 

I t  follows from the symmetry properties (5) that the 
mixing potential of any two types of particle that are 
situated at two positions in the crystal lattice must be 
equal to the mixing potential of the same particles 
situated at two other positions if even one symmetry 
transformation, which sends one of these two pairs of 

* The designations of  the elements of  the point groups On(m3m ) and 
D6h(6/mmm) are the same as ones adopted by McWeeny (1963). 
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Table 1. The rules of  position interchange under the symmetry transformations of  the disordered f.c.c, crystal 
structure 

o~ * . o~'1", k; .k; .k;  +.t.. m' o' t; ~ t; 

{ulo} x ~  k,,k,,*3 ,, o t, t2 
u m m m m 

{c~ lo}  = r  k3.,,,.k2 ,,, o t, t2 

{~-:"1o} ~ .2.'3.*, m o ,, ,, 

{c~ lo}  i ~ '  *i - k , , * , -  k , , - * ,  " o t, ~2 
i 

{~-.'~1o}i r,-a * , - * , , - ' 3 . * , - ' 3  m o r, t2 

{c~"lo} i =-~ - * , . k , -  k , . * , - *3  m o r, t, 

{~-~1o} ~ * ~ - * , . * , - * , , - * i  ,,, o t, t, 

{c~ lo}  ~'~ k , -k , . - * , ,~3-k ,  i "  o t, t, 
r , , , .  

{~-~lo} ~ - * , . k , - * , . k , - * ,  o l ,, t2 

{c: lo} !x~,, k3-k, .* , .k~-k,  t , , '  o ~, ,  t, 

{~-:lo} " #  * , - * , . * , - * , . k ,  ,,, o t2 t, 
w 

{c: lo}  1 ~ ~ , - * . . * i - . 3 , * ,  ~ o ,2 t, 

{~:1o} ! = ~  * " * ' - * " * ' - * '  m o t2 t, 

{e-:to} ~ z  * , - *~ . * , , * , - ' 2  ,'n o t ,  t, 

{c;Io} ~ - * , , * ~ - * i . * . - * ,  I m .  ° ', t. 

{c:lo} ~ ' 3 - * , , - ' 2 , * , - * ,  : ln'i  ° t, t, 

{C;IO} -xyz k 2 - k n , k t - k 3 , - k  3 m o t, t 2 

{c71o} r,,~ k~-~i,k3-k2,k~ m o t2 t, 

{c~lo} ~ -k , . - , , . -k ,  ,,, o r= ~, 

{C~IO} Z~'X= k 2 - k t , k z , k z - k  ~ m o t2 t, 

{c~lo} ~ -~3,-~2,-*,  m o t, ~, 

{C~Io} = ~  k i ' k i - k z ' k l - k ~  m o t, t, 

{C~ilO} x - ~  - k i , - k z , - k  2 m o t2 

o~ * , °~  I", k;, if ,Jr; :I: m' o' t; §m t; 

{itO } x--~ - k , , - k 2 , - k  3 m o tz tl 
m m m m : 

{s, ' lo}  r,-~ *2,k3,ki m o ~2 t, 
m m 

m o ,, 

{s.~lo} ~ k3 -k , , k . , k . - * .  , .  o t 2  t, 
r 

{ ~ 1 o }  . ~  k , - . , , * , - * ~ , * 2  . -  o l t. t, 

{s~ lo }  ~'~ k,-k, ,k,-k~,k,  " o I t2 t, 

i i : {~~1o)  ~ '  * . . * ~ - ' 2 . * . - * ,  " ' / o  i t2 t, 

{s~"lo} ~ k , , k , - * , , * , - k 3  ,,, I o I t, ti 

a , ,  *, - ,,2 . k, . * ,  - ,,, " i  o t2 ,, 

I{s: lo}  ~ ,  k,-*2,x,-k2,-*2 m o I ,, ,, 

I { e l o )  * , - * , , - * , , * , - * ,  " o ,, ,2 
m ~ 

I {~ : lo }  i " ~  * 2 - k , . * , - * , . - * ,  m o t, t, 

{S~]O} ~¢XZ' k 3 - k , , - k i , k 2 - k  , m o t, t z 

{~/Io} ~ , ~ - * , . * , - * , . * , - k ,  n, o t, tz 

{ , , - io} " -  i , , , l  o j , 2  ,, 

{o- lo} k a - k " k a - k " k 3  m ' 0  tz t, 

{o"'lo} r - , ~  k2.k,.k= m o ,, t, 

{,,"Io1 * , . *2 .k ,  ,,, o ,, ,2 

{o~1O} ~ k,-k,,-*~,k~-k2 " o t, ,, 
{, ,"1o} " ,,, o ,, t, 

{o~ lO}  .~'~ _ k i , k z _ k , , k _ k l  m 0 t, r 2 

* The elements of the corresponding symmetry group represented in the Seitz (1936) notation. 
I" The elements of the corresponding symmetry group represented in the International Tables for X-ray Crystallography (1952) notation. 

Transformations of the coordinates of vectors with respect to the basis of the reciprocal lattice under corresponding symmetry transformations. 
§ Type of position in which the position of t z type transforms under corresponding symmetry transformations. 

positions to another, exists. Therefore, if we fix the 
position of any one particle and draw imaginary 
coordination shells around it, in the general case not all 
positions in each chosen coordination shell can coincide 
owing to the application of all symmetry transformations 
of the solid solution, which retain the position of the 
origin of the shells to be fixed. Thus, the important 
outcome of the crystal symmetry is the property of 
noncentrality (anisotropy) of the interparticle interactions 
in the lattice gas, which exhibits a dependence of the 
pairwise mixing potential on the orientation (with respect 
to the crystal lattice) of the vector that connects the 
positions of particles in a pair. 

Using (5), we can obtain the coordination shells where 
the noncentrality of the interatomic interactions can take 
place. Hereafter, the necessary condition of noncentrality 
is the case when the set of positions within the 
corresponding coordination shell may be divided into 
groups of positions that cannot be made to coincide with 

each other by any symmetry transformation (with the 
origin of the shell stationary) of the solid solution. In 
Tables 4(a)-(c), the results of a similar consideration for 
the disordered solid solution are shown. Each row of 
these tables is characterized by the type of position 
chosen as the origin of the coordination shell (m, 0 or t is 
given at the beginning of the row). Each column is 
characterized by the position type forming the coordina- 
tion shell (m, 0 or t is given at the top of the column). 
At the intersection of every row with columns n 1, n2, n3 
and columns r 1, r2, r3, the numbers and the radii, 
respectively, of the In'st three coordination shells 
(composed of the positions of those types that 
characterize the column and formed around the positions 
of those types that characterize the row), the possible 
noncentrality of interatomic interaction is specified. 

Thus, for example, in the case of the h.c.p, lattice, 
choosing position t as the origin (any t position: t 1, t2, t3, 
t4) and considering the coordination shells formed by the 
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Table 2. As Table 1 but for the b.c.c, structure 

{ U I O  } , x y z  k , , k a ; k ,  m o, o z o3 t~ t= t~ t ,  t s t e 

{ c~ lo }~ ,zxy !  k z . k , . k z  rn o, o, o, t z t~ t, t s t e t ,  

{C='~O} Vzx k , , k ~ , * ,  m o, o, o, tn t, t ,  te t ,  t ,  
| 

{C~.IO} E-~y k , , k ~ , - k , - k , - k ~  rn o,  o3 o, t s t e t, t ,  tn t ,  
= 

{~..dlO} ~ "  k , , _ k , _ k _ k , , k  z m o~ o, o z t ,  t ,  t ,  t e t, tz 
1 

{C~IO} ~ _ k , _ k z _ k , , k , . k ,  m o, o~ o, t ,  t o t ,  t s t~ t, 
= 

{E~]O}  yz'~x k , , k , , - k t - k z - k ,  m o, o, o, t o t, t s t= t 4 t 2 
= 

{C=~,,lO} ~x~ k z , - k t - k , - k , , k  " m o, 03 ol t s t 3 t ,  t ,  t o t, 
= 

{ E ~ l o }  ' w~  - k , - * , - * , , k , , k ,  m o, o, o, to t, t, t3 t, t, 

{c; Io}  , a v  - * , . k , + k , + k . , - * ,  rn o, o. o, t, t, t, to t, t, 
1: 

{~-:1o} i " w  - k . , - , , , , , + , . . , 3  m o, o. o, to to t, t3 t, t, 

{c l io }  I z ~  _ k z , _ k = , k , + k 2 + k  ~ m o3 o, o, t s t, t e t z t ,  t 3 
= 

{~--:10} "~yX k , + k z + k 3 . - k , , - k  , t o o ,  02 o, t ,  t 4 t ,  t ,  t, t 3 
i 

{C:IO} ~ t z  k , + k , + k , , - k = , - k ,  m o= o , o  n t ,  t o t z t, t ,  t s 
a 

{~.-:10} y E z - k a , k , + k 2 + k 3 , - k  z m o, o, o,  t ,  t ,  t ,  t, t o t ,  
I 

{C~.IO } ~ _ k _ k z _ k a ,  k3 ,k ,  m ol o, o, t ,  t ,  t o t, t s t ,  
• 

{C;IO} .~y.~ k 3 , _ k _ k 3 _ k , , k  ' m o, o z o 3 t ,  t ,  t 3 t, t ,  t o 
1 

{C~]O} ~-'-yz k z , k , , - k , - k , - k =  m o, o, o, t, t ,  t e t 4 t ,  t ,  
i 

{C~lO} y ~  _ k t _ k 2 , k , + k 3 + k  3 m oz o, o 3 t, t ,  ts t ,  t 3 t ,  
= 

{C~[O} ~---$ _ k 2 , _ k t , _ k ,  m o3 o, 03 t, t ,  t ,  t ,  t o t ,  
= 

{c~'lo} ` ' ~  - , , , , , + k , + k ~ , - * ,  ~ o, o, o, to t, t~ t, t, to 
= 

{c; ' lo}  ~-~ - k . , - , , , - k ,  ~ o, o, o, t, ,, t. t, t. , .  
| 

{C~IO} XZl¢ k , + k z + k w - k 2 , - k ,  m o, o, o, t o t ,  t ,  t ,  t ,  t, 
| 

{C~IO} _ ~ _ k t _ k 3 , _ k z  m o, o3 o 2 t ,  t ,  t, t o t ,  t ,  

0 ~  * , o ~ t ' r  ' k ; . k ; . k ; ~  I m"  d I d= d = . t ~ § i  t ;  t~= t~ t~ t~ 

.{rio} , ~ - ~ ,  - k , . - k , . - *~  " "  ~ o, o, t, t, to t, t, t, 

{$=,v,[O } i' ~ _kz ,_ka ,_k ,  m o3 ol o 2 t e t ,  t s t s t, t z 
= . I 

{$~,~10 } I r zx -kz , k ,+kz+k , , - k ,  m o3 o, o z t e t, t ,  t ,  t 4 t ,  
= 

{~."1o} ' ~  - , , , - , . , k , . k , . , ,  = o, 03 o , i , ,  , .  , .  ,, , .  ,, 
• 

{s,"lo} Y = ~ ' k z ' - k 2 " k t * k ' + k 3  = o, o, o, I t ,  t ,  t ,  t ,  t, t ,  
, -~ 

{~.~1o} ~' j '  *' ÷ * '  ÷ * ~ ' - * ' ' - * '  " o, 03 o, ! t, ,. ,. t, ,. ,, 
• 1 

{$=z~..lO } Trz:x k, + k, * k 3,-k, . -k,  m 03 o, o, [ t, t, t, t, t,= t, 
• 

{~.'1o} .iv-kz,X,+kz+k,,-k 3 m o, o3 ol ! t ,  t ,  t, t s t~ t ,  
i 

{ S ~ r l O  } x-zy k a , k , , - k , - k , - k ,  m o, o= o z t z t, t ,  t e t s t, 
• • 

{.$,~10} £z~ k , , - k , - X z - X , . k ,  m o, o, o, t e t ,  t, t ,  t ,  t 4 

{s,'lo} " z , ~ "  _ , _ , _ , , . k , . ,  - m  o, o, o, t, t, t~ t, t, t ,  
• , 

o s o 2 o l  {~:1o} ~-p' * " * ~ ' - * ' - * ' - * ' "  t, t. t~ t~ ,, t. 

i i i 

{O..lO } -XyZ k , + k = + k 3 , - k , , - k  z m ol oz o3 i t 1  ts ts t4 t2 te 
• , 

{o.rlO} x ~ z - k 3 , k z + k 2 + k 3 , - k  , ra o, o z o~ t, t 2 t e t 4 t s t 3 
• • 

{o'1o} ~ r ~ - . , . - k , , X , * * , * * ~  = o, o, o3 t, t, t.  t, t, t, 

{o.,~lO} I r~ k , , k , , k ,  m o, ol o 3 t ,  t e t s t, t ,  t~ 

{,,.~lo } ~ k , . , , . - X , - k , - * ~  = o, o, o~ t. t~ t, t, t. 
= 

{o.=[0 ] ,yx  k , , * , , * ,  m oz Oz ol t ,  t ,  t ,  t ,  t, t ,  

{o.. io } ~p7 / , , . _ . , _ . _ ~ . , . . m  o. o, o, t, t, t~ t, t. t, 

{o.. io } ,,zv , , , . . , . ,  m ,~ o. o, t, t, t, t, t, t, 
• , 

{o.=~10} x'd-y - k z - k z - k = , k , , k  ~ m o, o3 o, t= t~ t, t e t= t 4 

* The elements of the corresponding symmetry group represented in the Seitz (1936) notation. 
I" The elements of the corresponding symmetry group represented in the International Tables for X-ray Crystallography (1952) notation. 
~7 Transformatiom of the coordinates of vectors with respect to the basis of the reciprocal lattice under corresponding symmetry transformations. 
§ Type of position in which the position of t I type transforms under corresponding symmetry transformations. 

o positions (all types of octahedralinterstices, i.e. both o 1 It follows from the consideration summarized in 
and 02) around the origin, we obtain the possible Tables 4(a)-(c) that the noncentrality of interatomic 
noncentrality of interactions at the third, fifth and interaction can take place even at sufficiently closely 
seventh coordination shells with the radii spaced interatomic distances and, thus, must be taken 
(a/2)(11/2) 1/2, (a/2)(57/6) 1/2 and (a/2)(27/2) 1/2, re- into account under the consistent statistical-thermody- 
spectively.* namic analysis of the solid solution. For example, in the 

From Table 4(a), one can find, for example, that, in the case of the h.c.p, lattice [Table 4(c)], noncentrality is 
case of the f.c.c, lattice, the noncentrality in interatomic possible at the first shell for the cases of atomic 
interaction (under the increase of the radii of correspond- coordinations of the types site-site and site-telrahedral 
ing shells) for tetrahedral coordination can appear at the interstice. 
third coordination shell first. For the cases when the Note that only necessary conditions of the existence of 
atoms occupy the positions of the same class (m, o or t), noncentrality have been used here. Therefore, under the 
the noncentrality can appear first at the ninth shell and, microscopic calculations of interatomic interaction 
for the positions of different types, at the fourth shell, energies, it may be that at some predicted coordination 

shells [see Tables 4(a)-(c)] the noncentrality is lacking.* 

* It is important to note that in the case of the h.c.p, lattice the 
corresponding results depend on the ratio of c to a. The noncentrality * The inverse situation cannot occur: other shells of the noncentrality 
shells presented in Table 4(c) correspond to the case of the ideal ratio (within the given radius) that are different from those obtained cannot 
c/a = (8/3) 1/2 "" 1.63. exist. 
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Table 3. As Table 1 but f o r  the h.c.p, structure (~ = a3/2 ) 

{UI0 } x , y , z  ka,ka, /q  n~ m2 ~ o~ 

{Cal~ } .~, .~,1 / 2 + Z - / q , - / q , / q  m~ na oa 

{GIo} y , x - y , z  - k i - t q , k a , / q  ma m~ ~ o2 

{~[0} y - x , ~ , z  k a , - k a - l q , I  q rna m~ o~ o2 

{c,l~} x-~,=,l/Z+~ -~,t~+~,k, m. .~ o~ 

{e, lr} Y'~-= ' I /~ '~  ~+t~,-~,,k, m, .~ .~ 

n~ ml ol o~ tf§ ti t; t~ 
t~ t~ t~ t( 

t~ tt t( t~ 

tt ta t~ t( 

tt t~ t~ t( 

t~ t~ t( t~ 

t~ t x t 4 t~ 

t~ t( tl t~ 

t3 Q tl tl 

t~ t, ta t~ 

t 4 t; t l t I 

t~ t~ t~ t 1 

t 4 t 3 t 2 t 1 

t~ t 4 t I t 2 

t( t~ t~ t~ 

t~ t 4 t~ t~ 

t~ t( t~ t~ 

t( t~ t~ tt 

t, t~ t~ t~ 

tt t~ t~ t4 

t~ t~ t~ t( 

t~ t~ t~ t, 

t~ t~ t( t~ 

t~ t x t~ t~ 

ti t I t4 t3 

{C~,I0}" x - y , y , [  / q , - / q  - / q , - / q  m~ na o~ 

{c~"10} Y'~'~ ~,~,-~ m~ .~ ~ 
{~"J0} ~ , y -  x , [  - k a - l q , l q , - I  q m~ mt ol o2 

{~n)l i .  ] . . . .  y , l ] 2 - :  ka+lq , -k~ , -1  q ~ m~ o2 o~ 

{ ~ . ) [ i }  y - x , ~ , l / 2 - : - k a , k a + / q , - / q  m~ m~ o~ 

{C~)ll } y , ~ , l / 2 - z  -~,-ka,-/q ~ m~ oa ot 

{,10} x,y,z -~i,-~,-/q ~ ~ ,~ 02 

{'~,1~} ~ ,y ,~ / z -~  ~, ~,_~ ~ ,~ o~ ,~ 

{SdO } y,y-x,~ ka+kz,-/q,-/q ~ ~ ot 

{~,10} x-y.~.~ - ~ , ~ + ~ , - ~  ~ ~ ~ 
{s,i. } y-x,~, l /z-z  ~ , - t~ -~ , -~  ,., ,,~ o2 o~ 

{~1~'} y ,x -y . l / z - z  - ~ _ ~ , ~ , ~  ,,,, ~ o2 ,~ 

{j~)10 } y- x,y,z -ka,ka + lq,lq n~ va2 ol o2 

{~'10} x'x-Y'~ ~+~'-~'~ ~ ~ 0~ °2 

{*~"1~} ~ , y - ~ , ~ / z ÷ ~  - k , - ~ , ~ , e ,  ~ ~ .~ ,~ 

* The elements of  the corresponding symmetry group represented in 
the Seitz (1936) notation. 

I" The elements of  the corresponding symmetry group represented in 
the International Tables for X-ray Crystallography (1952) notation. 

~: Transformations of  the coordinates of  vectors with respect to the 
basis of  the reciprocal lattice under corresponding symmetry 
transformations. 

§ Type of  position in which the position of  t I type transforms under 
corresponding symmetry transformations. 

So, for example, in Blanter (1985), in the case of 
octahedral coordination of the interstitial atoms in the 
b.c.c, lattice, the noncentrality of the strain-induced 
(elastic) interaction takes place at the sixth, seventh etc. 
coordination shells, though, as may be seen from Table 
4(b), the fifth shell is also present besides the above- 
mentioned ones. 

5. Matrix of mixing-potential Fourier transforms for 
reciprocal-lattice arbitrary points of disordered f.c.c., 

b.c.c, and h.c.p, solid solutions 

Under the theoretical development of interatomic 
potentials (or of mixing potentials) in solid solutions, 
the methods that permit one to find first the Fourier 
transforms of these potentials are used, as a rule (e.g. 
Khachaturyan, 1978, 1983; Krasko & Makhnovetskii, 

1974). For the symmetry adequacy of such methods, it is 
necessary (as shown in paper 1) to take into considera- 
tion the conditions imposed by the space symmetry of the 
solid solution on the potentials of interatomic interactions 
of its atomic components. For the Fourier transforms of 
the potentials, these requirements are expressed by (8)- 
(11). Using these equations and Tables 1-3, one can find 
the minimal number of independent elements of the 
matrix IIv~pq~01)l I for the cases of f.c.c., b.c.c, and h.c.p. 
disordered solid solutions, and also the analytical 
relationships between corresponding matrix elements. 
The results of this procedure are presented in Tables 5, 6 
and 7. Each of these tables is the fragment of the matrix 
II~q~01)ll under some given or,/3 and k. The indices p and 
q enumerate the rows and columns of the tables and run 
over the meanings 

f.c.c: 

b.c.c: 

h.c.p: 

{m, o, t 1, t2}; 

{m, 0 1 , 0 2 ,  03, t l ,  t2, t3, t4, t 5, t6}; 

{ml ,  m2,  0 1 , 0 2 ,  tl, t2, t3, t4}. 

The next elements are chosen as independent* 

f.C.C: 

{ W m r a ,  ~4~mo, ~/Vom, ~Vmt l ,  ~4),irn, ~Voo,  ~42otl, ~4~tlo, 1~),1/4 } ;  

b.c.c: 

{ ~4~mm, ~4Jmo I , ~410, m ,  l ~ O l O  1 , 1 ~ 0 1 0 2  , W m t  I , ~VOlt I , ~4~Olt 2 , ~ t ) t lm,  

W t l o  1 , ~41tlt I , ~4J t l t  2 , ~4) t l t  4 , l ~ t 2 0 1  , } ;  

h.c.p: 

{ ~Vrnlm 1 , ~4)mlm 2 , ~Vmlo  I , ~Vo lm I , ~4~mlt 1 , l ~ " m l t  2 , ~4Ptlm 1 , ~4)t2m 1 , 

~Vol t  I , ~4Polt 2 , ~4JtlO 1 , ~4Jtlo 2 , ~4Ptlt I , W t l ,  2 , W t l t  3 , l ~ , l t 4  } -  

All the remaining elements of the matrix II~pq~01)ll are 
expressed in terms of the independent ones by the use of 
the relationships presented in Tables 5-7 in correspond- 
ing cells. The symbol v~ is used for the designation of the 
complex quantities and the symbol V for the real ones. 
As an example, for the case of the h.c.p, lattice we get 
from Table 7 

× exp[i2zr(-k 1 - k z + k3)], 

where k 1, k 2 and k 3 are the coordinates of the vector k 
with respect to the basis of the reciprocal lattice. 

* The indices or, fl and the variable k are omitted for clarity. 
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Table 4. The numbers and the radii of the first three coordination shells of the possible noncentrality for the pairwise 
interaction of atoms at sites (m) and octahedral (o) and tetrahedral (t) interstices within disordered f.c.c., b.c.c, and 

h.c.p, crystal structures 

(a) F.c.c. structure 

fcc m o t 

rh r~ n~ r2 n~ r~ n~ r~ n~ r: n~ r~ n~ r~ n~ r? n~ r~ 

- -  2 2  - -  2 4 - - 3 a  4. ~ 8 4 ~ ] ~  9 3a 13 a ~  16 a ~-~ 4 3a 7 a~-ff 105...aa 4 __~t'~ 7 m I 
, ~ / 2  2 2 

0 4 3 a  72~-ff  1 0 5 a  9 3 a  132x/~ 162~r3-443a /-~ 74~ t~  8 4 ~ t ~  

t 4 ~ f 3 7 4 ~ / ~  8 4 ~ - 9 4 3 a ~ r 3 :  7 4 - -  4 ~/~ 84~/ '~ 3 2 ~ r 3 6 2 ~ t - 6 8 3 a 2  

(b) B.c.c. structure 

bc~ m 

th ~ r ! t h r~ t h r~ ~ r 1 

a I 3a 
m 10 ~ f 3 1 3  3a 18--q~-l: 5 - -  

2 2 

o 5 3 a  9 _ a ~  10 3_~a 4 a 
2 2 42 

t 4 4 4 2 - 9 6 3 a  t-~4__ 74~5"33  3a4 

o 

9 a/]-ff 10 3a 
2 

5 a4-~ 7 a~r2 
2 

54~q-7 7 5..~a4 

t 

rt n~ r~ n~ 

44,~-ff 6 ~ / 5 7 4 ~ t ' ~  

3 3a 54~i-~ 7 5a 
4 4 

4 4 o 

(c) H.c.p. structure 

.~n~ r~ n~ r= n~ 5 n~ t i 

, a  m 1 a 4 aq3 8 a 7 ~t~ 

o t 

8 a l J~ 10 a~/~ 1 ~3a 3 .2~t/~ 5 a. 5~_72,6 

3a 8 a ~  10 a~/~ 9 ' a~rff 3 2 ~ i ~  , a ~  2 ~  0 7  ~ a ~  6 a~i~!12 512~..6_ 7 

t 1 3a 3 a 1~1 5 a.5~7 3 a 1~1 5 a 5/-~ 7 a 2f~" 3 a 5 ,/~3 7 a~/2 
2~/2 --2~/6-- 2~/2 2~/6 2 ~ 2  a ~z 

In the particular case of tx =/~, according to (9) and 
(10) the additional requirement on the matrix elements 

is 

GO/* -- 0/0/ 
W p q  (k) = Wqp(k), (12) 

i.e. the corresponding block of the matrix must be 
Hermitian. 

From (9) and (10), one can also connect the matrix 
elements ~pq~(k) with the different sets {ot/~} distin- 
guished from each other by exchanging the elements 
only: 

~ ( k )  = ~p~(k). (13) 

Table 5. The matrix of the mixing-potential Fourier 
transforms II~pq~(k)ll for the disordered f.c.c, structure 
under the fixed or, fl and k, where k is an arbitrary point 

in the corresponding reciprocal lattice 

m o t,  t2 

~_(k,,k,,~,) ~.(k,,k,,~,). ,~,,,,(k,,k,,k,) ,~;,,(k,,~,k,). 
• e-t4~*h÷h) . e-tl=(~*hoh) 

¢.(K,k,,~)- 

~;,.(k,,~,g,). 

~,(~,~,~) %(k,,k,,~,)  

~,,,,(~,k,,k~) 

%,(~,k, ,~,)  

%,(~,k2,k,) 

%,(K,k,,lq) 
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Table 6. As Table 5 but for the b.c.c, structure 

Table 7. As Table 5 but for the h.c.p, structure 

:,., ,~.~ (~,,~,~,) 

~,. .(g,~,g) 

~(~,,k~,k,) 

• e - t ld :~  

~ ¢,,,.,(~,~,~,) 

,, %,(~,~,,~). 
• e-rz~ 

,, ~,.,(~,~,,~,) 

~,.,..,(~,k,,~,) 

'K,, (g,k,,~,)" 
• e - t 2 ~ ( ~ . ~ . s )  

,~;., (~,,~,~,). 
• e - t l , 0 ~ ' ~ - t ~  

,~:,., (~,,~,~-,). 
• en , . , ~  

%,(k,,k,,~,) 

~;,~(~,,~,,~,) 

:,';,,.,(~,~,~) 

,~.~ (~,,~,,~,) 

~,~ ( ~,~,~,). 
• et2,K~.~.t~) 

¢,,, (~,,~,,k,) 

,~.~ (k,,~,,~,). 

,~,,,, (~,,~,,~,) 

% (~,, ~,, t,). 
• e t 2 . ( ~ - ~ * ~ )  

'K,,(~,,~,,k,)" 

,~.,, (~,~,-~,) 

,~'~ ( ~,~,~,). 
• e~"(~*~-~) 

I%, (~,,~,~)F", 

:,.,,(k,,~,~,) 

%.(~,,k,,~,). 
• e t 2 ' ~ t : t : )  

%(~,~,~,). 
• e~2~(~*ta-~) 

%,(k,,~,,,~-,) 

% (k,,~,,,-~,). 

¢,.,~ (k,,~,~,) 

%,(k,,~,~,). 
• ~ - , l ~ q  

%(~ ,~ ,~ , )  

%,(k,,k,,~,). 
• e - n , ~ h * h ~  

¢,~,. (k~, k,,k,) 

%(~,,k,,~,). 
• e-~-~ 

%(~,,~,~,) 

%.(~,,~,,~,) 

,~,(~,,~,~,) 

%,(~,k,,~,). 

%(k~,~,t,) 

%(k,,~,~,) 

%(g,k,,k,) 

%,(~,~,,~,). 
• e~,dh 

%, (k,,~,-~,). 
• eJ2~ 

~,;,,.(~,~,,~) 

% (~.,~,k,). 
• e-n~(~*~+~) 

%,(k,,k,,~,) 

%(k,,G,k,)  

%(k,,~,,~,) 

%.(k,,~,,k,) 

% ( ~,k,-~,). 
• e t2 , . t s  

%,(k,,~,~,) 

%.(k,,~,~). 

%.(~,k,,~). 
• e - t~*~. ,  

%(k,,~,~,). 
• e-rZ~h 

%(k,,k,,~) 

%(k,,k,,~,) 
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Table 8. M a t r i c e s  o f  the  m i x i n g - p o t e n t i a l  F o u r i e r  Table 9. M a t r i c e s  o f  t he  m i x i n g - p o t e n t i a l  F o u r i e r  

t r a n s f o r m s  II~qa(k)ll f o r  the  d i s o r d e r e d  f . c . c ,  c r y s t a l  t r a n s f o r m s  II~pq#(k)ll f o r  d i s o r d e r e d  b .c .c ,  c r y s t a l  
s t r u c t u r e  w i t h  f i x e d  or, f l  

(a) k = (0,0,0)  (1") 

[" ~ll O ti tl 

m r _  v .  v., v., 
o v .  v :  v., v:, 

:, v,,. v,,. v,,,, v,,,, 
v,,. v,,, v,,,, v,,,. 

(b) k = (112, 112, 1/2) (L) 

L m o 6 q 
m v_  o v.,, -v.,, 

o o v.  v:, v., 

t, v,,. V,,. V,,,, v,,,, 

', -V,,,. V,,. V,,, V,,,, 

(c) k = (1/2,  112, O) (X) 

X m o t~ t z 

m v _  v .  0 0 

o v .  voo 0 0 

t, 0 0 ~,,, V,,,, 

,2 o o G, v,.,, 

(d) k = (1/4,  3/4,  112) (I40 

I# m o 6 h 

m V_ 0 0 0 

o 0 Voo 0 0 

t, 0 0 V,,,. 0 

t, 0 0 0 v,,,, 

The rules of transformation for the independent matrix 
components ~p~(k) due to the application of the elements 
of the corresponding symmetry group can be obtained 
from Tables 1-3 using (8). 

Note that, as may be seen from Tables 5 and 7, the 
block I[l~,~,~(k)[[, which corresponds to the octahedral 
interstices'tTor the cases of f.c.c, and h.c.p, lattices, has 
the form 

A B  

where A and B are the matrices of 2 x 2 dimensions. 
From Tables 5-7, one can also obtain the following 

analytical relationships 

f.c.c: 

Re ~ao(k) / Im ~mao(k) = - c o t a n  zr(ki + k2 + k3); 

(14) 

b.c.c: 

Re ~o~o2(k)/Im 1,~'o~o2 (k) = cotan rr(k 2 - kl), 
(15) 

Re ~ ,  ( k ) / Im  w,%~o~ (k) = - c o t a n  ~r(ka + k3); 

s t r u c t u r e  w i t h  f i x e d  or, fl  

(a) k = (0, O, O) (1") 

r m ~ ~ 0, t, t, t, t~ t~ t, 

m v -  v.~ v~ v.~ v... v.., v.. v.., v.,. v., 

o, v~. v~ v~.~ v~:. v~,, v~,, G, G, v~,, G, 
o, v..  v~.~ v~ %. v.,. v~,, v~,. v~,. G, v~,, 
9 v..  v~  v~  v.~ v.,, v.., v.,, v~ v~,, v~,, 
t, v.. v,,~ v,,~ v,.~ v,,~ v,,,, v,,,, v~,. v,,,. v,,, 
t. v,.. v~ v~ v,,, v~,, v,,,, v,,,, v,,,. G. G, 
t3 v,,. v,,,. i.;,~ v,,~ v~,, v,,,, v,,,,, v,,,, v,~, v,,,, 
t, v,,. v,,~ V,,o, v,,~ v,,, )4,,,. v,:. v,,,, v,,,, v,,,, 
t, v,,. v,,~ G, v,,~ v,,, ~,, v,,, v,:, v,,,, v,,,. 
t, v,,. v,., v,.~ v,,~ v,,, v,,,, v,:. v,,, v,.,, v,,,, 

(b) k = (o, o, ~) ( ~  
N m o, o2 ~ t, t, t~ t, t, t, 
m v_ o o v.~ o v. , -v .= ,  o -v.,. v.,, 

o v,, v.: o v~,, v~,, v:,, G, v~,, V*,,, 
o, o v~: v~. o v,,, v.:, v~,, v.,, v~,, v~,, 

o, V*,. o o v:: o -v~,, v~,, o v:,, -G ,  

t, o v~ v,,~ o v,,,, v,,,, v,,,, v,,,. v,,,, v,,,, 

t, v,,. v,,. v , , ~ - v ~  v,,,, G, G, G, v,,,, G. 
t , - v , , ,  v~ v,., v.~ v,.. v~,, v~,, v~,, v,.. v,.,, 
t.. I o v,,. v,~ o v,,,, v;,:, v,,,, v,,,, v,,,,-w,,,, 
t , - G .  v,.~ v,.: v~ v~,, v,,,, v,.,. v,.,, v~,, v,.~ 
t, v,,. v,~ v,~-v~ v~. G, v,,,, w,,. v,,~ v,:, 

(c) k = (1/2, 1/2,-1/2) (H) 
R ~ m o~ o~ t, 6 t, t4 ts t, 
m v_ v.~ v.~ v.~ 0 0 0 0 0 0 

o, v~. v~., v~: v~: G, o - G , - G ,  o G, 

o, v~. v~: V*~ v ~ : . - G ,  G, o v~,, :-v~,, o 
o. v~. v~., %, v~ o -v~,, v:, o v~ , , -G .  
t, 0 g,,~ -V,,~ 0 V,,,, 0 0 g,,,. 0 0 
6 0 0 ~,~ -V,,~ 0 V,,,, 0 0 V,,,, 0 

t, o -v,~ o g,,~ o o g,,~ o o g,,,, 

t, o -v,~ v,,,, o ~,,, o o v,,,, 0 0 

t~ 0 0 _~,~ g,,o, o g,,,, o 0 G, o 

t, 0 v,,~ 0 -g,,~ 0 0 g,,,, 0 0 V,,~ 

(d) k = (1/4, 1/4, 1/4) (P) 
p m fi o2 o~ t, h t3 t~ ts t, 
m V..  0 0 0 0 0 0 0 0 0 

o~ 0 V~, V.~.~ V~ iV,,,, 0 -P.~,,-V~, 0 iVy,, 

o. 0 V~: V~., V~ . . -G ,  W~,, 0 W~,,-G,  0 

o. 0 V.: V.: V~. 0 -V.,, ~V,,,, 0 W~,, -V~,, 

tl 0 _iVt, ~ _Vt,~ 0 gt:, 0 0 0 0 0 

t, 0 0 -i~,o, -V,,~ 0 g,,,, 0 0 0 0 

t3 0 _Vt,~ ' 0 i_iVt, ~ 0 0 Vt,, ' 0 0 0 

ti  0 _Vr, ~ _iVt,~ 0 0 0 0 pt,~ 0 0 

t5 0 0 - V ~ - i V t a  ` 0 0 0 0 Vt, t ' 0 

t, 0 -ig,~ 0 -V,,~ 0 0 0 0 0 V,,,, 



472 SYMMETRY OF INTERATOMIC L A T H C E  POTENTIALS. 2 

Table 10. Matrices of the mixing-potential Fourier transforms I I ~pq~ (k) ll for the disordered h.c.p, structure with fixed 
ot, fl 

(a) k = (0, 0, 0) (/") (d) k = (1/3, 1/3, 1/2) (H) 

il ummmm m u m m  I l l l l l ~  I I~ l l~  
|lmmlmlmll!llllll l  
I! mllm I llg Illlllg Ilgl  
II lml imi llnllgill 
3ml Nlmimi/NiBtil  
llu, u mu, neml D 
llu u mmnemi n 
llu u mut mmneD 

H n~ m~ o t 
V.~.~ 0 0 

0 V.~.~ 0 

,~ 0 0 v~ 

0 0 0 

t, 0 -v,..~ 0 

t2 v,..~ 0 0 

~ -K,,~ 0 0 

t, 0 v,,,~ 0 

h t2 ta t4 

o o v..,,-v.,, o 
o -v~,, o o v.~, 

0 0 0 0 0 

V~ 0 0 0 0 

0 E,,, 0 0 E,,, 
0 0 E,,, E,,, 0 

o o v,,,. v,,,, o 

0 V,,,, 0 0 V,,,, 

(b) k = (0, 1/2, O) (M) (e) k = (0, 1/2, 1/2) (L) 

lut, m u mmnemll 
Imm mmmllli 
lmmmmi lll lll 
I I lllll Iml l I m l l  Imll 

L ~ ~ ~ ~ t| t~ t3 t, 

'~ v.,., o v.,~ -v.,~ v.:, v.,,, -v.,,, v..,, 
i~ o v.~ v~  v ~ - % .  v~,, %, v.,,. 

.~ v.., v~ v.., o v.,, v~,, v.,, v~,, 
'~-Vo,~ v.. o v~. -v~,, v.,, v.,, -v.,, 
., v,,~-v,,~ v,,~ v,.~ v,,,, v,,,, v,,,, v,,,. 

,l v,,~ v,,~ v,,~ v,,~ -v,,,, v,,,, v,~, -Vv, 

.. v,,~ v,,., v,.~ v,,~ v,.. -v,,,,-v,,,, v,,,, 

(c) k = (1/3, 1/3, 0) (K) 

K n~ n~ o~ ~ h . t, t3 t4 

:~ v~., o o o o v~,, v~ o 
-. o v~ o o v.., o o %. 

0 0 V~ V~.. 0 0 0 0 

~: 0 0 v~,. V~ 0 0 0 0 

,, o v,~, o o v,,,, o o v,,,, 

t~ V,,,~ 0 0 0 0 V,,,, v,,,, 0 

,. v,.. o o o o v,,,. v,,,, o 
I" 0 v~ 0 0 v,,,, 0 0 v,,,, 

(f) k = (0, 0, 1/2) (A) 

A ~ ~ ~ ~ t| t2 t3 t~ 

v~ o v~ -v.,~ %, v~,, -%, v..,, 

o v.,., -v.,~-v~-v.,,. v.,, v.,., v.,,. 

.~ v~-v~ v~ o v~,, v~,, -v~,,-v~,, 

-v~.,-v.., o v~ v~,,-v.,, v~,,-v~,, 

tt Vt,.~-Vt.., Vt.~ Vt~ Vt,,, Vt,,, Vt,,, Vt,t. 

,, v,,~ v,,~ v,.. -v,,~-v,,,, v,,,, v,,,. -v,,,, 

,3-v,,~ v,,~-v,,~ v,,~ v,,,, v,,,. v,,,, v,,,, 

,. v,,.. v,,.. -v,.~-v,,., v,~. -v,,,,-v,,,, v,,,, 

h.c.p: transforms II~pq~(k)ll. As shown by Sanchez, Gratias & 
de Fontaine (1982), Khachaturyan (1978, 1983), 

Re ~o~o2(k)/Im WoU~o2(k) = -cotanzrk3;  (16) Solov'eva & Shtem (1990) and Zhorovkov (1993), the 
concentration modes can be found using the information 

where Re and Im mean the real and imaginary parts of on independent elements of this matrix. 
the complex quantity, respecti,~ely. The specific place in such an analysis belongs to the 

Lifshitz points* of the reciprocal lattice since these points 
6.  M a t r i c e s  o f  t h e  m i x i n g - p o t e n t i a l  F o u r i e r  t r a n s -  correspond to the stable ordered structures, which have a 
f o r m s  f o r  t h e  high-symmetry  points of a reciprocal wide range of existence in the phase diagrams of solid 

l a t t i ce  solutions and are most often observed in experiment 
(Sanchez, Gratias & de Fontaine, 1982; Khachaturyan, 

Under the statistical-thermodynamic analysis of the 1978, 1983). Therefore, it seems to be useful to construct 
stability of ordered structures within the method of 
concentration waves, it is necessary to know the normal * By definition, the wave-vector group of  the Lifshitz point contains 
concentration modes of the structural instabilities that are the symmetry elements intersecting at one point (Landau & Lifshitz, 
specified by the eigenvectors of matrices of the Fourier 1980; Khachaturyan, 1978, 1983). 
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the matrices of the Fourier transforms of mixing energies 
also for the Lifshitz points. The results of such a 
consideration are shown in Tables 8(a)-(c), 9(a)-(c) and 
10(a)-(f) for the disordered solid solutions with f.c,c., 
b.c.c, and h.c.p, lattices. 

Each of these tables presents the fragment of the 
matrix II~pq~(k)ll at some given t~,/~ and given vector k, 
which corresponds to one of the Lifshitz points of the 
structure under consideration. The convenient designa- 
tions introduced by Bouckaert, Smoluchowski & Wigner 
(1936) for the high-symmetry points of reciprocal lattices 
are used. The symbol V is used for the designation of the 
real quantities. The additional requirements on matrix 
elements ~pq~(k), as in the case of the non-Lifshitz points, 
are (12) and (13). Note that for the Lifshitz points all 
matrix components ~pq~(k) necessary are real or 
imaginary. Moreover, the elements belonging to the 
same types of position (one of m, o and t) must be real.* 

The analysis carded out in this work concerns the 
symmetry properties of the mixing potentials of the 
lowest orders (unary and binary) in disordered structures. 
Similarly (on the basis of the approach proposed in paper 
1), the study of mixing potentials of higher orders and/or 
for ordered structures can be performed. 

*The block I1~ . . . .  (k)ll of the Fourier transforms of the mixing 
• r ~ . • 

potential correspondmg to the sites of a disordered h.c.p, binary solution 
was obtained by Sanchez, Gratias & de Fontaine (1982) and Zhorovkov 
(1993) both for arbitrary and for the high-symmetry points of reciprocal 
space. The same results for the block II~o, oj(k)ll corresponding to the 
octahedral interstices of disordered b.c.c, binary solution were given by 
Khachaturyan (1978, 1983) for the cases of some high-symmetry 
points. 

This work is supported by the International Science 
Foundation and by the Ukranian Foundation for Funda- 
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Abstract Introduction 

Structural classes (SC) are very useful for the description 
and consideration of molecular arrangements in crystals. 
The distribution of 19642 organic homomolecular 
crystals among SC has been investigated. 305 SC 
having very unequal frequencies were discovered. A 
full list is given. 
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The concept of structural class (SC), proposed by Zorky, 
Belsky, Lazareva & Porai-Koshits (1967), has proved to 
be very convenient for describing the general features of 
molecular arrangements connected with space symmetry. 
We sometimes say that the SC reflects 'the topology' of a 
molecular crystal (Zorky 1991). The meaning of this 
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